Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity

MPG-Autoren
/persons/resource/persons238712

Schäfer,  Tillmann
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons135434

Hornburg,  D.
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78356

Mann,  M.
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77721

Baumeister,  W.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78384

Meissner,  Felix
Meissner, Felix / Experimental Systems Immunology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77952

Fernandez-Busnadiego,  R.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Riera-Tur, I., Schäfer, T., Hornburg, D., Mishra, A., Padilha, M. D., Fernandez-Mosquera, L., et al. (2021). Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity. Life science alliance, 5(3): e202101185. doi:10.26508/lsa.202101185.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-AAF9-E
Zusammenfassung
The autophagy-lysosomal pathway is impaired in many neurode-generative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like beta-sheet proteins (beta proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, beta proteins interact with and sequester AP-3 mu 1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3 mu 1 expression ameliorates neurotoxicity caused by beta proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.