Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Inferring HIV Escape Rates from Multi-Locus Genotype Data

MPG-Autoren
/persons/resource/persons275734

Kessinger,  TA
Research Group Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272322

Neher,  RA
Research Group Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kessinger, T., Perelson, A., & Neher, R. (2013). Inferring HIV Escape Rates from Multi-Locus Genotype Data. Frontiers in immunology, 4: 252. doi:10.3389/fimmu.2013.00252.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-ACAE-1
Zusammenfassung
Cytotoxic T-lymphocytes (CTLs) recognize viral protein fragments displayed by major histocompatibility complex molecules on the surface of virally infected cells and generate an anti-viral response that can kill the infected cells. Virus variants whose protein fragments are not efficiently presented on infected cells or whose fragments are presented but not recognized by CTLs therefore have a competitive advantage and spread rapidly through the population. We present a method that allows a more robust estimation of these escape rates from serially sampled sequence data. The proposed method accounts for competition between multiple escapes by explicitly modeling the accumulation of escape mutations and the stochastic effects of rare multiple mutants. Applying our method to serially sampled HIV sequence data, we estimate rates of HIV escape that are substantially larger than those previously reported. The method can be extended to complex escapes that require compensatory mutations. We expect our method to be applicable in other contexts such as cancer evolution where time series data is also available.