English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Thesis

Towards greener stationary phases : thermoresponsive and carbonaceous chromatographic supports

MPS-Authors
/persons/resource/persons121925

Tan,  I.
Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Thesis.pdf
(Any fulltext), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Tan, I. (2011). Towards greener stationary phases: thermoresponsive and carbonaceous chromatographic supports. PhD Thesis, Universität, Potsdam.


Cite as: https://hdl.handle.net/21.11116/0000-000A-AF98-6
Abstract
Polymers which are sensitive towards external physical, chemical and electrical stimuli are termed as ‘intelligent materials’ and are widely used in medical and engineering applications. Presently, polymers which can undergo a physical change when heat is applied at a certain temperature (cloud point) in water are well-studied for this property in areas of separation chemistry, gene and drug delivery and as surface modifiers. One example of such a polymer is the poly (N-isopropylacrylamide) PNIPAAM, where it is dissolved well in water below 32 oC, while by increasing the temperature further leads to its precipitation. In this work, an alternative polymer poly (2-(2-methoxy ethoxy)ethyl methacrylate-co- oligo(ethylene glycol) methacrylate) (P(MEO2MA-co-OEGMA)) is studied due to its biocompatibility and the ability to vary its cloud points in water. When a layer of temperature responsive polymer was attached to a single continuous porous piece of silica-based material known as a monolith, the thermoresponsive characteristic was transferred to the column surfaces. The hybrid material was demonstrated to act as a simple temperature ‘switch’ in the separation of a mixture of five steroids under water. Different analytes were observed to be separated under varying column temperatures. Furthermore, more complex biochemical compounds such as proteins were also tested for separation. The importance of this work is attributed to separation processes utilizing environmentally friendly conditions, since harsh chemical environments conventionally used to resolve biocompounds could cause their biological activities to be rendered inactive.