English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A meta-analysis of genome-wide association studies identifies multiple longevity genes

MPS-Authors
/persons/resource/persons276058

Deelen,  J.
Deelen – Genetics and Biomarkers of Human Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Deelen, J., Evans, D. S., Arking, D. E., Tesi, N., Nygaard, M., Liu, X., et al. (2019). A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun, 10(1), 3669. doi:10.1038/s41467-019-11558-2.


Cite as: https://hdl.handle.net/21.11116/0000-000B-2B93-F
Abstract
Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) epsilon4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE epsilon2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.