English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity

MPS-Authors
/persons/resource/persons276056

Nolte,  H.
Department Langer - Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons281120

Sprenger,  Hans-Georg
Sprenger – Molecular Metabolism & Energy Homeostasis, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons278030

Langer,  T.
Department Langer - Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hammerschmidt, P., Ostkotte, D., Nolte, H., Gerl, M. J., Jais, A., Brunner, H. L., et al. (2019). CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity. Cell, 177(6), 1536-1552 e23. doi:10.1016/j.cell.2019.05.008.


Cite as: https://hdl.handle.net/21.11116/0000-000B-4248-A
Abstract
Ectopic lipid deposition and altered mitochondrial dynamics contribute to the development of obesity and insulin resistance. However, the mechanistic link between these processes remained unclear. Here we demonstrate that the C16:0 sphingolipid synthesizing ceramide synthases, CerS5 and CerS6, affect distinct sphingolipid pools and that abrogation of CerS6 but not of CerS5 protects from obesity and insulin resistance. We identify proteins that specifically interact with C16:0 sphingolipids derived from CerS5 or CerS6. Here, only CerS6-derived C16:0 sphingolipids bind the mitochondrial fission factor (Mff). CerS6 and Mff deficiency protect from fatty acid-induced mitochondrial fragmentation in vitro, and the two proteins genetically interact in vivo in obesity-induced mitochondrial fragmentation and development of insulin resistance. Our experiments reveal an unprecedented specificity of sphingolipid signaling depending on specific synthesizing enzymes, provide a mechanistic link between hepatic lipid deposition and mitochondrial fragmentation in obesity, and define the CerS6-derived sphingolipid/Mff interaction as a therapeutic target for metabolic diseases.