English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication

MPS-Authors
/persons/resource/persons278114

Jiang,  M.
Department Larsson - Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons129408

Milenkovic,  D.
Department Larsson - Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons277927

Li,  X.
Proteomics, Core Facilities, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons104734

Atanassov,  Ilian
Proteomics, Core Facilities, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons278117

Albarran-Gutierrez,  S.
Department Larsson - Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons129342

Larsson,  N.G.
Department Larsson - Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jiang, M., Xie, X., Zhu, X., Jiang, S., Milenkovic, D., Misic, J., et al. (2021). The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. Sci Adv, 7(27), eabf8631. doi:10.1126/sciadv.abf8631.


Cite as: https://hdl.handle.net/21.11116/0000-000A-FA25-3
Abstract
We report a role for the mitochondrial single-stranded DNA binding protein (mtSSB) in regulating mitochondrial DNA (mtDNA) replication initiation in mammalian mitochondria. Transcription from the light-strand promoter (LSP) is required both for gene expression and for generating the RNA primers needed for initiation of mtDNA synthesis. In the absence of mtSSB, transcription from LSP is strongly up-regulated, but no replication primers are formed. Using deep sequencing in a mouse knockout model and biochemical reconstitution experiments with pure proteins, we find that mtSSB is necessary to restrict transcription initiation to optimize RNA primer formation at both origins of mtDNA replication. Last, we show that human pathological versions of mtSSB causing severe mitochondrial disease cannot efficiently support primer formation and initiation of mtDNA replication.