English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Stable Isotope Labeling of Amino Acids in Flies (SILAF) Reveals Differential Phosphorylation of Mitochondrial Proteins Upon Loss of OXPHOS Subunits

MPS-Authors
/persons/resource/persons104734

Atanassov,  Ilian
Proteomics, Core Facilities, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schober, F. A., Atanassov, I., Moore, D., Calvo-Garrido, J., Moedas, M. F., Wedell, A., et al. (2021). Stable Isotope Labeling of Amino Acids in Flies (SILAF) Reveals Differential Phosphorylation of Mitochondrial Proteins Upon Loss of OXPHOS Subunits. Mol Cell Proteomics, 20, 100065. doi:10.1016/j.mcpro.2021.100065.


Cite as: https://hdl.handle.net/21.11116/0000-000A-F760-3
Abstract
Drosophila melanogaster has been a workhorse of genetics and cell biology for more than a century. However, proteomic-based methods have been limited due to the complexity and dynamic range of the fly proteome and the lack of efficient labeling methods. Here, we advanced a chemically defined food source into direct stable-isotope labeling of amino acids in flies (SILAF). It allows for the rapid and cost-efficient generation of a large number of larvae or flies, with full incorporation of lysine-[(13)C6] after six labeling days. SILAF followed by fractionation and enrichment gave proteomic insights at a depth of 7196 proteins and 8451 phosphorylation sites, which substantiated metabolic regulation on enzymatic level. We applied SILAF to quantify the mitochondrial phosphoproteome of an early-stage leucine-rich PPR motif-containing protein (LRPPRC)-knockdown fly model of mitochondrial disease that almost exclusively affects protein levels of the oxidative phosphorylation (OXPHOS) system. While the mitochondrial compartment was hypo-phosphorylated, two conserved phosphosites on OXPHOS subunits NDUFB10 and NDUFA4 were significantly upregulated upon impaired OXPHOS function. The ease and versatility of the method actuate the fruit fly as an appealing model in proteomic and posttranslational modification studies, and it enlarges potential metabolic applications based on heavy amino acid diets.