English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The recombination landscape in Arabidopsis thaliana F2 populations

MPS-Authors
/persons/resource/persons274048

Salomé,  PA
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272646

Bomblies,  K
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272720

Fitz,  J
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons97260

Laitinen,  RAE
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273496

Yant,  L
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons85266

Weigel,  D
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Salomé, P., Bomblies, K., Fitz, J., Laitinen, R., Yant, L., & Weigel, D. (2011). The recombination landscape in Arabidopsis thaliana F2 populations. Heredity, 108(4), 447-455. doi:10.1038/hdy.2011.95.


Cite as: https://hdl.handle.net/21.11116/0000-000A-B326-1
Abstract
Recombination during meiosis shapes the complement of alleles segregating in the progeny of hybrids, and has important consequences for phenotypic variation. We examined allele frequencies, as well as crossover (XO) locations and frequencies in over 7000 plants from 17 F(2) populations derived from crosses between 18 Arabidopsis thaliana accessions. We observed segregation distortion between parental alleles in over half of our populations. The potential causes of distortion include variation in seed dormancy and lethal epistatic interactions. Such a high occurrence of distortion was only detected here because of the large sample size of each population and the number of populations characterized. Most plants carry only one or two XOs per chromosome pair, and therefore inherit very large, non-recombined genomic fragments from each parent. Recombination frequencies vary between populations but consistently increase adjacent to the centromeres. Importantly, recombination rates do not correlate with whole-genome sequence differences between parental accessions, suggesting that sequence diversity within A. thaliana does not normally reach levels that are high enough to exert a major influence on the formation of XOs. A global knowledge of the patterns of recombination in F(2) populations is crucial to better understand the segregation of phenotypic traits in hybrids, in the laboratory or in the wild.