Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Anti-Poiseuille flow: Increased vortex velocity at superconductor edges

MPG-Autoren
/persons/resource/persons245033

Kennes,  D. M.
Institut für Theorie der Statistischen Physik, RWTH Aachen;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevB.105.224512.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

suppl.zip
(Ergänzendes Material), 56MB

Zitation

Okugawa, T., Benyamini, A., Millis, A. J., & Kennes, D. M. (2022). Anti-Poiseuille flow: Increased vortex velocity at superconductor edges. Physical Review B, 105(22): 224512. doi:10.1103/PhysRevB.105.224512.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-B66D-F
Zusammenfassung
Using the time-dependent Ginzburg-Landau equations, we study vortex motion driven by an applied current in two-dimensional superconductors in the presence of a physical boundary. At smaller sourced currents the vortex lattice moves as a whole, with each vortex moving at the same velocity. At the larger sourced current, the vortex motion is organized into channels, with vortices in channels closer to the sample edges moving faster than those farther away from sample edges, opposite the Poiseuille flow of basic hydrodynamics in which the velocity is lowest at the boundaries. At intermediate currents, a stick-slip motion of the vortex lattice occurs in which vortices in the channel at the boundary break free from the Abrikosov lattice, accelerate, move past their neighbors, and then slow down and reattach to the vortex lattice, at which point the stick-slip process starts over. These effects could be observed experimentally, e.g., using fast scanning microscopy techniques.