English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The crystal structure of the dimeric colicin M immunity protein displays a 3D domain swap

MPS-Authors
/persons/resource/persons275402

Patzer,  SI
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271640

Braun,  V
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Usón, I., Patzer, S., Rodríguez, D., Braun, V., & Zeth, K. (2012). The crystal structure of the dimeric colicin M immunity protein displays a 3D domain swap. Journal of Structural Biology, 178(1), 45-53. doi:10.1016/j.jsb.2012.02.004.


Cite as: https://hdl.handle.net/21.11116/0000-000A-B6F6-3
Abstract
Bacteriocins are proteins secreted by many bacterial cells to kill related bacteria of the same niche. To avoid their own suicide through reuptake of secreted bacteriocins, these bacteria protect themselves by co-expression of immunity proteins in the compartment of colicin destination. In Escherichia coli the colicin M (Cma) is inactivated by the interaction with the Cma immunity protein (Cmi). We have crystallized and solved the structure of Cmi at a resolution of 1.95Å by the recently developed ab initio phasing program ARCIMBOLDO. The monomeric structure of the mature 10kDa protein comprises a long N-terminal α-helix and a four-stranded C-terminal β-sheet. Dimerization of this fold is mediated by an extended interface of hydrogen bond interactions between the α-helix and the four-stranded β-sheet of the symmetry related molecule. Two intermolecular disulfide bridges covalently connect this dimer to further lock this complex. The Cmi protein resembles an example of a 3D domain swapping being stalled through physical linkage. The dimer is a highly charged complex with a significant surplus of negative charges presumably responsible for interactions with Cma. Dimerization of Cmi was also demonstrated to occur in vivo. Although the Cmi-Cma complex is unique among bacteria, the general fold of Cmi is representative for a class of YebF-like proteins which are known to be secreted into the external medium by some Gram-negative bacteria.