English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Attosecond magnetization dynamics in non-magnetic materials driven by intense femtosecond lasers

MPS-Authors
/persons/resource/persons261477

Neufeld,  O.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science, Hamburg;

/persons/resource/persons194586

Tancogne-Dejean,  N.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science, Hamburg;

/persons/resource/persons221949

de Giovannini,  U.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science, Hamburg;
Università degli Studi di Palermo, Dipartimento di Fisica e Chimica—Emilio Segrè;

/persons/resource/persons221951

Hübener,  H.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science, Hamburg;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science, Hamburg;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

s41524-023-00997-7.pdf
(Publisher version), 2MB

Supplementary Material (public)

41524_2023_997_MOESM1_ESM.pdf
(Supplementary material), 2MB

Citation

Neufeld, O., Tancogne-Dejean, N., de Giovannini, U., Hübener, H., & Rubio, A. (2023). Attosecond magnetization dynamics in non-magnetic materials driven by intense femtosecond lasers. npj Computational Materials, 9(1): 39. doi:10.1038/s41524-023-00997-7.


Cite as: https://hdl.handle.net/21.11116/0000-000A-B8E5-4
Abstract
Irradiating solids with ultrashort laser pulses is known to initiate femtosecond timescale magnetization dynamics. However, sub-femtosecond spin dynamics have not yet been observed or predicted. Here, we explore ultrafast light-driven spin dynamics in a highly nonresonant strong-field regime. Through state-of-the-art ab initio calculations, we predict that a nonmagnetic material can transiently transform into a magnetic one via dynamical extremely nonlinear spin-flipping processes, which occur on attosecond timescales and are mediated by cascaded multi-photon and spin–orbit interactions. These are nonperturbative nonresonant analogs to the inverse Faraday effect, allowing the magnetization to evolve in very high harmonics of the laser frequency (e.g. here up to the 42nd, oscillating at ~100 attoseconds), and providing control over the speed of magnetization by tuning the laser power and wavelength. Remarkably, we show that even for linearly polarized driving, where one does not intuitively expect the onset of an induced magnetization, the magnetization transiently oscillates as the system interacts with light. This response is enabled by transverse light-driven currents in the solid, and typically occurs on timescales of ~500 attoseconds (with the slower femtosecond response suppressed). An experimental setup capable of measuring these dynamics through pump–probe transient absorption spectroscopy is simulated. Our results pave the way for attosecond regimes of manipulation of magnetism.