Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Hybrid Machine Learning Approach for Structure Stability Prediction in Molecular Co-crystal Screenings

MPG-Autoren
/persons/resource/persons261884

Wengert,  Simon
Theory, Fritz Haber Institute, Max Planck Society;
Chair of Theoretical Chemistry, Technische Universitát München;

/persons/resource/persons22000

Reuter,  Karsten
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons257500

Margraf,  Johannes
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

acs.jctc.2c00343.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wengert, S., Csányi, G., Reuter, K., & Margraf, J. (2022). A Hybrid Machine Learning Approach for Structure Stability Prediction in Molecular Co-crystal Screenings. Journal of Chemical Theory and Computation, 18(7), 4586-4593. doi:10.1021/acs.jctc.2c00343.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-BE30-A
Zusammenfassung
Co-crystals are a highly interesting material class as varying their components and stoichiometry in principle allows tuning supramolecular assemblies toward desired physical properties. The in silico prediction of co-crystal structures represents a daunting task, however, as they span a vast search space and usually feature large unit cells. This requires theoretical models that are accurate and fast to evaluate, a combination that can in principle be accomplished by modern machine-learned (ML) potentials trained on first-principles data. Crucially, these ML potentials need to account for the description of long-range interactions, which are essential for the stability and structure of molecular crystals. In this contribution, we present a strategy for developing Δ-ML potentials for co-crystals, which use a physical baseline model to describe long-range interactions. The applicability of this approach is demonstrated for co-crystals of variable composition consisting of an active pharmaceutical ingredient and various co-formers. We find that the Δ-ML approach offers a strong and consistent improvement over the density functional tight binding baseline. Importantly, this even holds true when extrapolating beyond the scope of the training set, for instance in molecular dynamics simulations under ambient conditions.