Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Phase-Sensitive Vibrational Sum and Difference Frequency-Generation Spectroscopy Enabling Nanometer-Depth Profiling at Interfaces

MPG-Autoren
/persons/resource/persons186099

Balos,  Vasileios
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
IMDEA Nanoscience;

/persons/resource/persons173796

Garling,  Tobias
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons276355

Diaz Duque,  Alvaro
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons276357

John,  Ben
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons183260

Thämer,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

acs.jpcc.2c01324.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Balos, V., Garling, T., Diaz Duque, A., John, B., Wolf, M., & Thämer, M. (2022). Phase-Sensitive Vibrational Sum and Difference Frequency-Generation Spectroscopy Enabling Nanometer-Depth Profiling at Interfaces. The Journal of Physical Chemistry C, 126(26), 10818-10832. doi:10.1021/acs.jpcc.2c01324.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-C159-8
Zusammenfassung
The unique physical and chemical properties of interfaces are governed by a finite depth that describes the transition from the topmost atomic layer to the properties of the bulk material. Thus, understanding the physical nature of interfaces requires detailed insight into the different structures, chemical compositions, and physical processes that form this interfacial region. Such insight has traditionally been difficult to obtain from experiments, as it requires a combination of structural and chemical sensitivity with spatial depth resolution on the nanometer scale. In this contribution, we present a vibrational spectroscopic approach that can overcome these limitations. By combining phase-sensitive sum and difference frequency-generation (SFG and DFG, respectively) spectroscopy and by selectively determining different nonlinear interaction pathways, we can extract precise depth information and correlate these to specific vibrationally resonant modes of interfacial species. We detail the mathematical framework behind this approach and demonstrate the performance of this technique in two sets of experiments on selected model samples. An analysis of the results shows an almost perfect match between experiment and theory, confirming the practicability of the proposed concept under realistic experimental conditions. Furthermore, in measurements with self-assembled monolayers of different chain lengths, we analyze the spatial accuracy of the technique and find that the precision can even reach the sub-nanometer regime. We also discuss the implications and the information content of such depth-sensitive measurements and show that the concept is very general and goes beyond the analysis of the depth profiles. The presented SFG/DFG technique offers new perspectives for spectroscopic investigations of interfaces in various material systems by providing access to fundamental observables that have so far been inaccessible by experiments. Here, we set the theoretical and experimental basis for such future investigations.