English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Crystallographic studies of rhodopsins: structure and dynamics

MPS-Authors
/persons/resource/persons123592

Grünbein,  Marie Luise
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons183396

Nass Kovacs,  Gabriela
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons203860

Kloos,  Marco
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons192083

Gorel,  Alexander
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons117878

Doak,  R. Bruce
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95345

Shoeman,  Robert L.
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92083

Barends,  Thomas R. M.
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95189

Schlichting,  Ilme
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Grünbein, M. L., Nass Kovacs, G., Kloos, M., Gorel, A., Doak, R. B., Shoeman, R. L., et al. (2022). Crystallographic studies of rhodopsins: structure and dynamics. In Methods in Molecular Biology (pp. 147-168). New York, NY: Humana. doi:10.1007/978-1-0716-2329-9_7.


Cite as: https://hdl.handle.net/21.11116/0000-000A-C545-A
Abstract
Crystal structures have provided detailed insight in the architecture of rhodopsin photoreceptors. Of particular interest are the protein-chromophore interactions that govern the light-induced retinal isomerization and ultimately induce the large structural changes important for the various biological functions of the family. The reaction intermediates occurring along the rhodopsin photocycle have vastly differing lifetimes, from hundreds of femtoseconds to milliseconds. Detailed insight at high spatial and temporal resolution can be obtained by time-resolved crystallography using pump-probe approaches at X-ray free-electron lasers. Alternatively, cryotrapping approaches can be used. Both the approaches are described, including illumination and sample delivery. The importance of appropriate photoexcitation avoiding multiphoton absorption is stressed.