Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Munc13-1 is a Ca2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission

MPG-Autoren
/persons/resource/persons182278

Lipstein,  N.
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons14934

Chang,  S.
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

Lin,  K.-H.
Emeritus Group of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons276637

López-Murcia,  Francisco Jose
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons15570

Neher,  Erwin       
Emeritus Group of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons185565

Taschenberger,  H.       
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182104

Brose,  N.
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3397785.pdf
(Verlagsversion), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lipstein, N., Chang, S., Lin, K.-H., López-Murcia, F. J., Neher, E., Taschenberger, H., et al. (2021). Munc13-1 is a Ca2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission. Neuron, 109(24), 3980-4000.e7. doi:10.1016/j.neuron.2021.09.054.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-CE86-7
Zusammenfassung
During ongoing presynaptic action potential (AP) firing, transmitter release is limited by the availability of release-ready synaptic vesicles (SVs). The rate of SV recruitment (SVR) to release sites is strongly upregulated at high AP frequencies to balance SV consumption. We show that Munc13-1—an essential SV priming protein—regulates SVR via a Ca2+-phospholipid-dependent mechanism. Using knockin mouse lines with point mutations in the Ca2+-phospholipid-binding C2B domain of Munc13-1, we demonstrate that abolishing Ca2+-phospholipid binding increases synaptic depression, slows recovery of synaptic strength after SV pool depletion, and reduces temporal fidelity of synaptic transmission, while increased Ca2+-phospholipid binding has the opposite effects. Thus, Ca2+-phospholipid binding to the Munc13-1-C2B domain accelerates SVR, reduces short-term synaptic depression, and increases the endurance and temporal fidelity of neurotransmission, demonstrating that Munc13-1 is a core vesicle priming hub that adjusts SV re-supply to demand.