English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Developmental genetics with model organisms

MPS-Authors
/persons/resource/persons271718

Irion,  U
Research Group Colour Pattern Formation, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons271460

Nüsslein-Volhard,  C
Research Group Colour Pattern Formation, Max Planck Institute for Biology Tübingen, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Irion, U., & Nüsslein-Volhard, C. (2022). Developmental genetics with model organisms. Proceedings of the National Academy of Sciences of the United States of America, 119(30): e2122148119. doi:10.1073/pnas.2122148119.


Cite as: https://hdl.handle.net/21.11116/0000-000A-D0A2-3
Abstract
In Darwin's and Mendel's times, researchers investigated a wealth of organisms, chosen to solve particular problems for which they seemed especially well suited. Later, a focus on a few organisms, which are accessible to systematic genetic investigations, resulted in larger repertoires of methods and applications in these few species. Genetic animal model organisms with large research communities are the nematode Caenorhabditis elegans, the fly Drosophila melanogaster, the zebrafish Danio rerio, and the mouse Mus musculus. Due to their specific strengths, these model organisms have their strongest impacts in rather different areas of biology. C. elegans is unbeatable in the analysis of cell-to-cell contacts by saturation mutagenesis, as worms can be grown very fast in very high numbers. In Drosophila, a rich pattern is generated in the embryo as well as in adults that is used to unravel the underlying mechanisms of morphogenesis. The transparent larvae of zebrafish are uniquely suited to study organ development in a vertebrate, and the superb versatility of reverse genetics in the mouse made it the model organism to study human physiology and diseases. The combination of these models allows the in-depth genetic analysis of many fundamental biological processes using a plethora of different methods, finally providing many specific approaches to combat human diseases. The plant model Arabidopsis thaliana provides an understanding of many aspects of plant biology that might ultimately be useful for breeding crops.