Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Towards quantifying information flows: Relative entropy in deep neural networks and the renormalization group

MPG-Autoren
/persons/resource/persons268572

Grosvenor,  Kevin T.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2107.06898.pdf
(Preprint), 818KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Erdmenger, J., Grosvenor, K. T., & Jefferson, R. (2022). Towards quantifying information flows: Relative entropy in deep neural networks and the renormalization group. SciPost Physics Core, 12(1): 041. doi:10.21468/SciPostPhys.12.1.041.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-D36F-C
Zusammenfassung
We investigate the analogy between the renormalization group (RG) and deep neural networks, wherein subsequent layers of neurons are analogous to successive steps along the RG. In particular, we quantify the flow of information by explicitly computing the relative entropy or Kullback-Leibler divergence in both the one- and two-dimensional Ising models under decimation RG, as well as in a feedforward neural network as a function of depth. We observe qualitatively identical behavior characterized by the monotonic increase to a parameter-dependent asymptotic value. On the quantum field theory side, the monotonic increase confirms the connection between the relative entropy and the c-theorem. For the neural networks, the asymptotic behavior may have implications for various information maximization methods in machine learning, as well as for disentangling compactness and generalizability. Furthermore, while both the two-dimensional Ising model and the random neural networks we consider exhibit non-trivial critical points, the relative entropy appears insensitive to the phase structure of either system. In this sense, more refined probes are required in order to fully elucidate the flow of information in these models. (C) Copyright J. Erdmenger et al. This work is licensed under the Creative Commons Attribution 4.0 International License. Published by the SciPost Foundation.