Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Patterns of tubb2b promoter-driven fluorescence in the forebrain of larval Xenopus laevis

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Daume, D., Offner, T., Hassenkloever, T., & Manzini, I. (2022). Patterns of tubb2b promoter-driven fluorescence in the forebrain of larval Xenopus laevis. Frontiers in Neuroanatomy, 16: 914281. doi:10.3389/fnana.2022.914281.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-D383-3
Zusammenfassung
Microtubules are essential components of the cytoskeleton of all eukaryotic cells and consist of alpha- and beta-tubulin heterodimers. Several tissue-specific isotypes of alpha- and beta-tubulins, encoded by distinct genes, have been described in vertebrates. In the African clawed frog (Xenopus laevis), class II beta-tubulin (tubb2b) is expressed exclusively in neurons, and its promoter is used to establish different transgenic frog lines. However, a thorough investigation of the expression pattern of tubb2b has not been carried out yet. In this study, we describe the expression of tubb2b-dependent Katushka fluorescence in the forebrain of premetamorphic Xenopus laevis at cellular resolution. To determine the exact location of Katushka-positive neurons in the forebrain nuclei and to verify the extent of neuronal Katushka expression, we used a transgenic frog line and performed several additional antibody stainings. We found tubb2b-dependent fluorescence throughout the Xenopus forebrain, but not in all neurons. In the olfactory bulb, tubb2b-dependent fluorescence is present in axonal projections from the olfactory epithelium, cells in the mitral cell layer, and fibers of the extrabulbar system, but not in interneurons. We also detected tubb2b-dependent fluorescence in parts of the basal ganglia, the amygdaloid complex, the pallium, the optic nerve, the preoptic area, and the hypothalamus. In the diencephalon, tubb2b-dependent fluorescence occurred mainly in the prethalamus and thalamus. As in the olfactory system, not all neurons of these forebrain regions exhibited tubb2b-dependent fluorescence. Together, our results present a detailed overview of the distribution of tubb2b-dependent fluorescence in neurons of the forebrain of larval Xenopus laevis and clearly show that tubb2b-dependent fluorescence cannot be used as a pan-neuronal marker.