English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Creating sparser prediction models of treatment outcome in depression: a proof-of-concept study using simultaneous feature selection and hyperparameter tuning

MPS-Authors
/persons/resource/persons262436

Rost,  Nicolas
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;
IMPRS Translational Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80280

Bruckl,  Tanja
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons261980

Koutsouleris,  Nikolaos
Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80272

Binder,  Elisabeth B.
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80450

Mueller-Myhsok,  Bertram
RG Statistical Genetics, Max Planck Institute of Psychiatry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rost, N., Bruckl, T., Koutsouleris, N., Binder, E. B., & Mueller-Myhsok, B. (2022). Creating sparser prediction models of treatment outcome in depression: a proof-of-concept study using simultaneous feature selection and hyperparameter tuning. BMC MEDICAL INFORMATICS AND DECISION MAKING, 22(1): 181. doi:10.1186/s12911-022-01926-2.


Cite as: https://hdl.handle.net/21.11116/0000-000A-D7AA-4
Abstract
Background Predicting treatment outcome in major depressive disorder (MDD) remains an essential challenge for precision psychiatry. Clinical prediction models (CPMs) based on supervised machine learning have been a promising approach for this endeavor. However, only few CPMs have focused on model sparsity even though sparser models might facilitate the translation into clinical practice and lower the expenses of their application. Methods In this study, we developed a predictive modeling pipeline that combines hyperparameter tuning and recursive feature elimination in a nested cross-validation framework. We applied this pipeline to a real-world clinical data set on MDD treatment response and to a second simulated data set using three different classification algorithms. Performance was evaluated by permutation testing and comparison to a reference pipeline without nested feature selection. Results Across all models, the proposed pipeline led to sparser CPMs compared to the reference pipeline. Except for one comparison, the proposed pipeline resulted in equally or more accurate predictions. For MDD treatment response, balanced accuracy scores ranged between 61 and 71% when models were applied to hold-out validation data. Conclusions The resulting models might be particularly interesting for clinical applications as they could reduce expenses for clinical institutions and stress for patients.