English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Novel constraints on neutrino physics beyond the standard model from the CONUS experiment

MPS-Authors
/persons/resource/persons230036

Bonhomme,  A.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30592

Heusser,  G.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30768

Lindner,  M.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30794

Maneschg,  W.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bonet, H., Bonhomme, A., Buck, C., Fuelber, K., Hakenmueller, J., Heusser, G., et al. (2022). Novel constraints on neutrino physics beyond the standard model from the CONUS experiment. Journal of high energy physics: JHEP, 2022(5): 085. doi:10.1007/JHEP05(2022)085.


Cite as: https://hdl.handle.net/21.11116/0000-000A-E768-D
Abstract
The measurements of coherent elastic neutrino-nucleus scattering (CE nu NS) experiments have opened up the possibility to constrain neutrino physics beyond the standard model of elementary particle physics. Furthermore, by considering neutrino-electron scattering in the keV-energy region, it is possible to set additional limits on new physics processes. Here, we present constraints that are derived from CONUS germanium data on beyond the standard model (BSM) processes like tensor and vector non-standard interactions (NSIs) in the neutrino-quark sector, as well as light vector and scalar mediators. Thanks to the realized low background levels in the CONUS experiment at ionization energies below 1 keV, we are able to set the world's best limits on tensor NSIs from CE nu NS and constrain the scale of corresponding new physics to lie above 360 GeV. For vector NSIs, the derived limits strongly depend on the assumed ionization quenching factor within the detector material, since small quenching factors largely suppress potential signals for both, the expected standard model CE nu NS process and the vector NSIs. Furthermore, competitive limits on scalar and vector mediators are obtained from the CE nu NS channel at reactor-site which allow to probe coupling constants as low as 5 10(-5) of low mediator masses, assuming the currently favored quenching factor regime. The consideration of neutrino-electron scatterings allows to set even stronger constraints for mediator masses below similar to 1 MeV and similar to 10 MeV for scalar and vector mediators, respectively.