English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Catalytic Asymmetric Pictet–Spengler Platform as a Biomimetic Diversification Strategy toward Naturally Occurring Alkaloids

MPS-Authors
/persons/resource/persons268349

Scharf,  Manuel J.
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Scharf, M. J., & List, B. (2022). A Catalytic Asymmetric Pictet–Spengler Platform as a Biomimetic Diversification Strategy toward Naturally Occurring Alkaloids. Journal of the American Chemical Society, 144(34), 15451-15456. doi:10.1021/jacs.2c06664.


Cite as: https://hdl.handle.net/21.11116/0000-000A-FF69-2
Abstract
Tetrahydroisoquinoline (THIQ) alkaloids constitute a large and diverse class of bioactive natural products, with the parent compounds and related downstream biosynthetic secondary metabolites spanning thousands of isolated structures. Chemoenzymatic synthetic approaches toward the relevant THIQs rely on Pictet–Spenglerases such as norcoclaurine synthase (NCS), the scope of which is strictly limited to dopamine-related phenolic substrates. To overcome these limitations in the context of chemical synthesis, we herein report asymmetric Pictet–Spengler reactions of N-carbamoyl-β-arylethylamines with diverse aldehydes toward enantioenriched THIQs. The obtained products proved to be competent intermediates in the synthesis of THIQ, aporphine, tetrahydroberberine, morphinan, and androcymbine natural products. Novel catalyst design with regard to the stabilization of cationic intermediates was crucial to accomplish high reactivity while simultaneously achieving unprecedented stereoselectivity for the reaction of biologically relevant substrates.