Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Surface and electronic structure at atomic length scales of the nonsymmorphic antiferromagnet Eu5In2Sb6

MPG-Autoren
/persons/resource/persons241625

Ale Crivillero,  M. Victoria
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126821

Rößler,  Sahana
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126910

Wirth,  S.
Steffen Wirth, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ale Crivillero, M. V., Rößler, S., Rosa, P. F. S., Müller, J., Rößler, U. K., & Wirth, S. (2022). Surface and electronic structure at atomic length scales of the nonsymmorphic antiferromagnet Eu5In2Sb6. Physical Review B, 106(3): 035124, pp. 1-10. doi:10.1103/PhysRevB.106.035124.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-E58B-7
Zusammenfassung
We performed scanning tunneling microscopy and spectroscopy (STM/STS) measurements to investigate the Zintl phase Eu5In2Sb6, a nonsymmorphic antiferromagnet. The theoretical prediction of a nontrivial Fermi surface topology stabilized by the nonsymmorphic symmetry motivated our research. On the cleaved (010) plane, we obtained striped patterns that can be correlated to the stacking of the [In2Sb6]10-double chains along the crystallographic c axis. The attempted cleavage along the a axis revealed a more complex pattern. We combined the STS measurement on nonreconstructed (010) and (081) surfaces with DFT calculations to further elucidate the electronic structure of Eu5In2Sb6. From our investigations so far, direct experimental evidence of the predicted topological surface states remains elusive. © 2022 authors. Published by the American Physical Society.