English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Conjugal plasmid transfer in Streptomyces resembles bacterial chromosome segregation by FtsK/SpoIIIE

MPS-Authors
/persons/resource/persons272285

Ammelburg,  M
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273555

Linke,  D
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272636

Flötenmeyer,  M
Electron Microscopy, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Vogelmann, J., Ammelburg, M., Finger, C., Guezguez, J., Linke, D., Flötenmeyer, M., et al. (2011). Conjugal plasmid transfer in Streptomyces resembles bacterial chromosome segregation by FtsK/SpoIIIE. EMBO Journal, 30(11), 2246-2254. doi:10.1038/emboj.2011.121.


Cite as: https://hdl.handle.net/21.11116/0000-000A-E6E9-C
Abstract
Conjugation is a major route of horizontal gene transfer, the driving force in the evolution of bacterial genomes. Antibiotic producing soil bacteria of the genus Streptomyces transfer DNA in a unique process involving a single plasmid-encoded protein TraB and a double-stranded DNA molecule. However, the molecular function of TraB in directing DNA transfer from a donor into a recipient cell is unknown. Here, we show that TraB constitutes a novel conjugation system that is clearly distinguished from DNA transfer by a type IV secretion system. We demonstrate that TraB specifically recognizes and binds to repeated 8 bp motifs on the conjugative plasmid. The specific DNA recognition is mediated by helix α3 of the C-terminal winged-helix-turn-helix domain of TraB. We show that TraB assembles to a hexameric ring structure with a central ∼3.1 nm channel and forms pores in lipid bilayers. Structure, sequence similarity and DNA binding characteristics of TraB indicate that TraB is derived from an FtsK-like ancestor protein, suggesting that Streptomyces adapted the FtsK/SpoIIIE chromosome segregation system to transfer DNA between two distinct Streptomyces cells.