English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pharmacological characterization of recombinant rat corticotropin releasing factor binding protein using different sauvagine analogs

MPS-Authors
/persons/resource/persons182214

Jahn,  Olaf
Molecular neuroendocrinology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182135

Eckart,  Klaus
Molecular neuroendocrinology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182423

Spiess,  Joachim
Molecular neuroendocrinology, Max Planck Institute of Experimental Medicine, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jahn, O., Eckart, K., Sydow, S., Hofmann, B. A., & Spiess, J. (2001). Pharmacological characterization of recombinant rat corticotropin releasing factor binding protein using different sauvagine analogs. Peptides, 22(1), 47-56. doi:10.1016/S0196-9781(00)00356-9.


Cite as: https://hdl.handle.net/21.11116/0000-000A-EA49-D
Abstract
Little is known on the structural ligand requirements for corticotropin-releasing factor binding protein (CRFBP) of the rat used as an important experimental animal. To obtain such information recombinant rat CRFBP was produced in stably transfected HEK 293 cells. The primary structure and posttranslational processing of purified rat CRFBP was established by peptide mapping using HPLC combined with mass spectrometric analysis. Rat CRFBP was pharmacologically characterized employing a competition binding assay with tritium-labeled rat urocortin. The rank order of declining affinity of various CRF analogs was urotensin-I, human/rat CRF (h/rCRF), rat urocortin, sauvagine (Svg), and ovine CRF in agreement with the rank order found for human CRFBP. In contrast to astressin, the CRF receptor 2-selective antagonist anti-sauvagine-30 did not show any detectable specific binding to rat CRFBP. The significance of residues 10 to 12 and 21 to 24 of Svg for its low affinity binding was established by changing these residues of Svg to those of h/rCRF. The corresponding residues 22 to 25 of h/rCRF represented the ARAE motif determined to be crucial for binding in agreement with reported data on human CRFBP. Residues 11 to 13 of CRF introduced into Svg also enhanced the affinity to rat CRFBP.