English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe

MPS-Authors
/persons/resource/persons268383

Reifenberg,  Simon F.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons268385

Martin,  Anna
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons268387

Kohl,  Matthias
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons193091

Bacer,  Sara
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons252345

Hamryszczak,  Zaneta
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons192706

Tadic,  Ivan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons268305

Röder,  Lenard
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons268389

Crowley,  Daniel J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100935

Fischer,  Horst
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons268391

Kaiser,  Katharina
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101255

Schneider,  Johannes
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons260112

Dörich,  Raphael
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100898

Crowley,  John N.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons104597

Pöhlker,  Christopher
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons213647

Holanda,  Bruna A.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230468

Krüger,  Ovid
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203102

Pöhlker,  Mira
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203315

Dorf,  Marcel
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101364

Williams,  Jonathan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100983

Harder,  Hartwig
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101196

Pozzer,  Andrea
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Reifenberg, S. F., Martin, A., Kohl, M., Bacer, S., Hamryszczak, Z., Tadic, I., et al. (2022). Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe. Atmospheric Chemistry and Physics, 22(16), 10901-10917. doi:10.5194/acp-22-10901-2022.


Cite as: https://hdl.handle.net/21.11116/0000-000A-EACA-B
Abstract
Aerosols influence the Earth's energy balance directly by modifying the radiation transfer and indirectly by altering the cloud microphysics. Anthropogenic aerosol emissions dropped considerably when the global COVID-19 pandemic resulted in severe restraints on mobility, production, and public life in spring 2020. We assess the effects of these reduced emissions on direct and indirect aerosol radiative forcing over Europe, excluding contributions from contrails. We simulate the atmospheric composition with the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model in a baseline (business-as-usual) and a reduced emission scenario. The model results are compared to aircraft observations from the BLUESKY aircraft campaign performed in May–June 2020 over Europe. The model agrees well with most of the observations, except for sulfur dioxide, particulate sulfate, and nitrate in the upper troposphere, likely due to a biased representation of stratospheric aerosol chemistry and missing information about volcanic eruptions. The comparison with a baseline scenario shows that the largest relative differences for tracers and aerosols are found in the upper troposphere, around the aircraft cruise altitude, due to the reduced aircraft emissions, while the largest absolute changes are present at the surface. We also find an increase in all-sky shortwave radiation of 0.21 ± 0.05 W m−2 at the surface in Europe for May 2020, solely attributable to the direct aerosol effect, which is dominated by decreased aerosol scattering of sunlight, followed by reduced aerosol absorption caused by lower concentrations of inorganic and black carbon aerosols in the troposphere. A further increase in shortwave radiation from aerosol indirect effects was found to be much smaller than its variability. Impacts on ice crystal concentrations, cloud droplet number concentrations, and effective crystal radii are found to be negligible.