English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication

MPS-Authors
/persons/resource/persons276894

Rohner,  N
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273555

Linke,  D
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons219033

Brand,  M
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271460

Nüsslein-Volhard,  C
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons276896

Harris,  MP
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rohner, N., Bercsényi, M., Orbán, L., Kolanczyk, M., Linke, D., Brand, M., et al. (2009). Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication. Current Biology, 19(19), 1642-1647. doi:10.1016/j.cub.2009.07.065.


Cite as: https://hdl.handle.net/21.11116/0000-000A-ED98-0
Abstract
The genetic basis of morphological variation both within and between species has been a lasting question in evolutionary biology and one of considerable recent debate. It is thought that changes in postembryonic development leading to variations in adult form often serve as a basis for selection . Thus, we investigated the genetic basis of the development of adult structures in the zebrafish via a forward genetic approach and asked whether the genes and mechanisms found could be predictive of changes in other species. Here we describe the spiegeldanio (spd) zebrafish mutation, which leads to reduced scale formation in the adult. The affected gene is fibroblast growth factor receptor 1 (fgfr1), which is known to have an essential embryonic function in vertebrate development. We find that the zebrafish has two paralogs encoding Fgfr1 and show that they function redundantly during embryogenesis. However, only one paralog is required for formation of scales during juvenile development. Furthermore, we identify loss-of-function alleles changing the coding sequence of Fgfr1a1 that have been independently selected twice during the domestication of the carp (Cyprinus carpio). These findings provide evidence for the role for gene duplication in providing the raw material for generation of morphological diversity.