Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

All-optical coherent quantum-noise cancellation in cascaded optomechanical systems

MPG-Autoren
/persons/resource/persons231176

Schweer,  Jakob
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons206608

Steinmeyer,  Daniel
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons124270

Hammerer,  Klemens
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4315

Heurs,  Michele
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2208.01982.pdf
(Preprint), 566KB

PhysRevA.106.033520.pdf
(Verlagsversion), 595KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schweer, J., Steinmeyer, D., Hammerer, K., & Heurs, M. (2022). All-optical coherent quantum-noise cancellation in cascaded optomechanical systems. Physical Review A, 106(3): 033520. doi:10.1103/PhysRevA.106.033520.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-EF49-8
Zusammenfassung
Coherent quantum noise cancellation (CQNC) can be used in optomechanical




sensors to surpass the standard quantum limit (SQL). In this paper, we




investigate an optomechanical force sensor that uses the CQNC strategy by




cascading the optomechanical system with an all-optical effective negative mass




oscillator. Specifically, we analyze matching conditions, losses and compare




the two possible arrangements in which either the optomechanical or the




negative mass system couples first to light. While both of these orderings




yield a sub-SQL performance, we find that placing the effective negative mass




oscillator before the optomechanical sensor will always be advantageous for




realistic parameters. The modular design of the cascaded scheme allows for




better control of the sub-systems by avoiding undesirable coupling between




system components, while maintaining similar performance to the integrated




configuration proposed earlier. We conclude our work with a case study of a




micro-optomechanical implementation.