English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models

MPS-Authors
/persons/resource/persons256991

Wang,  Wei
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, W., Metzler, R., & Cherstvy, A. G. (2022). Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models. Physical Chemistry Chemical Physics, 24(31), 18482-18504. doi:10.1039/d2cp01741e.


Cite as: https://hdl.handle.net/21.11116/0000-000B-0270-4
Abstract
How does a systematic time-dependence of the diffusion coefficient D(t) affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking (SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged mean-squared displacements-denoted as the standard MSD < x(2)(Delta)> and TAMSD <<(delta(2)(Delta))over bar>> quantifiers-of FBM featuring < x(2) (Delta >> = <<(delta(2)(Delta >)over bar>> proportional to Delta(2H) (where H is the Hurst exponent and Delta is the [lag] time) changes in the presence of a power-law deterministically varying diffusivity D-proportional to(t) proportional to t(alpha-1) -germane to the process of scaled Brownian motion (SBM)-determining the strength of fractional Gaussian noise. The resulting compound "scaled-fractional" Brownian motion or FBM-SBM is found to be nonergodic, with < x(2)(Delta >> proportional to Delta(alpha+)(2H)(-1) and <(delta 2(Delta >) over bar > proportional to Delta(2H). We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when alpha + 2H - 1 < 0. The distribution of particle displacements for FBM-SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 < alpha < 2 and 0 < H < 1). The FBM-SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM-SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM-SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM-SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM-SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements.