日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

PNIPAAm microgels with defined network architecture as temperature sensors in optical stretchers

MPS-Authors
/persons/resource/persons256075

Beck,  Timon
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons248158

Müller,  Paul
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons241284

Guck,  Jochen
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Mater Adv 2022 Hauck.pdf
(出版社版), 6MB

付随資料 (公開)
There is no public supplementary material available
引用

Hauck, N., Beck, T., Cojoc, G., Schlüßler, R., Ahmed, S., Raguzin, I., Mayer, M., Schubert, J., Müller, P., Guck, J., & Thiele, J. (2022). PNIPAAm microgels with defined network architecture as temperature sensors in optical stretchers. Materials Advances, 3, 6179-6190. doi:10.1039/D2MA00296E.


引用: https://hdl.handle.net/21.11116/0000-000A-FF12-3
要旨
Stretching individual living cells with light is a standard method to assess their mechanical properties. Yet, heat introduced by the laser light of optical stretchers may unwittingly change the mechanical properties of cells therein. To estimate the temperature induced by an optical trap, we introduce cell-sized, elastic poly(N-isopropylacrylamide) (PNIPAAm) microgels that relate temperature changes to hydrogel swelling. For their usage as a standardized calibration tool, we analyze the effect of free-radical chain-growth gelation (FCG) and polymer-analogous photogelation (PAG) on hydrogel network heterogeneity, micromechanics, and temperature response by Brillouin microscopy and optical diffraction tomography. Using a combination of tailor-made PNIPAAm macromers, PAG, and microfluidic processing, we obtain microgels with homogeneous network architecture. With that, we expand the capability of standardized microgels in calibrating and validating cell mechanics analysis, not only considering cell and microgel elasticity but also providing stimuli-responsiveness to consider dynamic changes that cells may undergo during characterization.