English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay

MPS-Authors
/persons/resource/persons273080

Behm-Ansmant,  I
Department Biochemistry, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271767

Izaurralde,  E
Department Biochemistry, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V., & Izaurralde, E. (2007). A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO Journal, 26(6), 1591-1601. doi:10.1038/sj.emboj.7601588.


Cite as: https://hdl.handle.net/21.11116/0000-000B-03AA-2
Abstract
The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs with premature translation termination codons (PTCs). The mechanisms by which PTCs and natural stop codons are discriminated remain unclear. We show that the position of stops relative to the poly(A) tail (and thus of PABPC1) is a critical determinant for PTC definition in Drosophila melanogaster. Indeed, tethering of PABPC1 downstream of a PTC abolishes NMD. Conversely, natural stops trigger NMD when the length of the 3' UTR is increased. However, many endogenous transcripts with exceptionally long 3' UTRs escape NMD, suggesting that the increase in 3' UTR length has co-evolved with the acquisition of features that suppress NMD. We provide evidence for the existence of 3' UTRs conferring immunity to NMD. We also show that PABPC1 binding is sufficient for PTC recognition, regardless of cleavage or polyadenylation. The role of PABPC1 in NMD must go beyond that of providing positional information for PTC definition, because its depletion suppresses NMD under conditions in which translation efficiency is not affected. These findings reveal a conserved role for PABPC1 in mRNA surveillance.