English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mo-Incorporated Magnetite Fe3O4 Featuring Cationic Vacancies Enabling Fast Lithium Intercalation for Batteries

MPS-Authors
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Guo, S., Koketsu, T., Hu, Z., Zhou, J., Kuo, C.-Y., Lin, H.-J., et al. (2022). Mo-Incorporated Magnetite Fe3O4 Featuring Cationic Vacancies Enabling Fast Lithium Intercalation for Batteries. Small, 2203835, pp. 1-12. doi:10.1002/smll.202203835.


Cite as: https://hdl.handle.net/21.11116/0000-000B-123E-C
Abstract
Transition metal oxides (TMOs) as high-capacity electrodes have several drawbacks owing to their inherent poor electronic conductivity and structural instability during the multi-electron conversion reaction process. In this study, the authors use an intrinsic high-valent cation substitution approach to stabilize cation-deficient magnetite (Fe3O4) and overcome the abovementioned issues. Herein, 5 at% of Mo4+-ions are incorporated into the spinel structure to substitute octahedral Fe3+-ions, featuring approximate to 1.7 at% cationic vacancies in the octahedral sites. This defective Fe-2.93 ▫0.017Mo0.053O4 electrode shows significant improvements in the mitigation of capacity fade and the promotion of rate performance as compared to the pristine Fe3O4. Furthermore, physical-electrochemical analyses and theoretical calculations are performed to investigate the underlying mechanisms. In Fe-2.93 ▫0.017Mo0.053O4, the cationic vacancies provide active sites for storing Li+ and vacancy-mediated Li+ migration paths with lower energy barriers. The enlarged lattice and improved electronic conductivity induced by larger doped-Mo4+ yield this defective oxide capable of fast lithium intercalation. This is confirmed by a combined characterization including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT) and density functional theory (DFT) calculation. This study provides a valuable strategy of vacancy-mediated reaction to intrinsically modulate the defective structure in TMOs for high-performance lithium-ion batteries.