Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spontaneously blinking fluorophores for accelerated MINFLUX nanoscopy

MPG-Autoren
/persons/resource/persons276422

Remmel,  Michael
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons280771

Scheiderer,  Lukas
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons191595

Butkevich,  Alexey
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons14883

Bossi,  Mariano L.
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons15210

Hell,  Stefan W.       
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Remmel, M., Scheiderer, L., Butkevich, A., Bossi, M. L., & Hell, S. W. (2022). Spontaneously blinking fluorophores for accelerated MINFLUX nanoscopy. bioRxiv, 1-17. doi:10.1101/2022.08.29.505670.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-1547-E
Zusammenfassung
Spontaneously blinking fluorophores, a class of molecules switching rapidly between a dark and a brightly emitting state, have emerged as a popular core to build fluorescent markers for super-resolution microscopy. With typical on-times in the order of tens of milliseconds, they are most suitable for STORM and related nanoscopy methods. Recent MINFLUX nanoscopy, however, can localize molecules even within a millisecond and achieve an up to ten times higher localization precision. Here, we present a series of spontaneous blinkers with short on-times (1-3 ms) matching MINFLUX recording time-scales. Our design builds upon a silicon rhodamine fluorescent core with a modified thiophene- or a benzothiophene-fused spirolactam fragment, which shifts the spirocyclization equilibrium toward the dark closed form at physiological conditions, imparting cell permeability. Concurrently, we obtain a highly photostable, short-lived open form with bright red emission. Characterizing the blinking behavior of single fluorophores bound to three different protein tags (antibodies, nanobodies, and HaloTag self-labeling enzyme) allowed us to select the best candidate for MINFLUX microscopy. The short on-times speed up MINFLUX localization by up to 30-fold.