English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

African Smoke Particles Act as Cloud Condensation Nuclei in the Wintertime Tropical North Atlantic Boundary Layer over Barbados

MPS-Authors
/persons/resource/persons203102

Pöhlker,  Mira L.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230468

Krüger,  Ovid
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons104597

Pöhlker,  Christopher
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Royer, H. M., Pöhlker, M. L., Krüger, O., Blades, E., Sealy, P., Lata, N. N., et al. (2022). African Smoke Particles Act as Cloud Condensation Nuclei in the Wintertime Tropical North Atlantic Boundary Layer over Barbados. Atmospheric Chemistry and Physics Discussions, 22. doi:10.5194/acp-2022-341.


Cite as: https://hdl.handle.net/21.11116/0000-000B-1F39-4
Abstract
The number concentration and properties of aerosol particles serving as cloud condensation nuclei (CCN) are important for understanding cloud formation, particularly in the tropical Atlantic marine boundary layer (MBL) where marine cumulus clouds reflect incoming solar radiation and obscure the low-albedo ocean surface. Studies linking aerosol source, composition, and water uptake properties in this region have been conducted primarily during summertime dust transport, despite the region receiving a variety of aerosol particle types throughout the year. In this study, we compare size-resolved aerosol chemical composition data to the hygroscopicity parameter κ derived from size-resolved CCN measurements made during the EUREC4A and ATOMIC campaigns from January to February 2020. We observed unexpected periods of wintertime long-range transport of African smoke and dust to Barbados. During these periods, the accumulation mode aerosol particle and CCN number concentrations as well as the proportions of dust and smoke particles increased while the average κ slightly decreased (κ = 0.45+0.1) from marine background conditions (κ = 0.52+0.08) when the particles were mostly composed of marine organics and sulfate. Size-resolved chemical analysis shows that smoke particles were the major contributor to the accumulation mode aerosol during long-range transport events, indicating that smoke is mainly responsible for the observed increase in CCN number concentrations. Earlier studies conducted at Barbados have mostly focused on the role of dust on CCN, but our results show that aerosol hygroscopicity and CCN number concentrations during wintertime long-range transport events over the tropical North Atlantic are affected by African smoke more than dust. Our findings highlight the importance of African smoke for atmospheric processes and cloud formation over the Caribbean.