Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Conference Paper

A Combinatorial Approach to Protein Docking with Flexible Side-Chains

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Althaus, E., Kohlbacher, O., Lenhof, H.-P., & Müller, P. (2000). A Combinatorial Approach to Protein Docking with Flexible Side-Chains. In R. Shamir, S. Miyano, S. Istrail, P. Pevzner, & M. Waterman (Eds.), Proceedings of the 4th Annual International Conference on Computational Molecular Biology (RECOMB-00) (pp. 15-24). New York, USA: ACM Press.

Cite as: https://hdl.handle.net/21.11116/0000-000B-235C-7
Rigid body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side—chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side—chains while keeping the protein backbone rigid. Starting from candidates created by a rigid docking algorithm, we demangle the side—chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side—chain demangling. Both approaches are based on a discrete representation of the side—chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem we propose a fast heuristic approach and an exact, albeit slower method using branch—&—cut techniques. As a test set we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples the highest—ranking conformation produced was a good approximation of the true complex structure.