English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atmospheric and surface processes, and feedback mechanisms determining Arctic amplification: A review of first results and prospects of the (AC)3 Project

MPS-Authors
/persons/resource/persons226310

Jansen,  Friedhelm
Tropical Cloud Observations, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1520-0477-BAMS-D-21-0218.1.pdf
(Publisher version), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Wendisch, M., Brückner, M., Crewell, S., Ehrlich, A., Notholt, J., Lüpkes, C., et al. (2023). Atmospheric and surface processes, and feedback mechanisms determining Arctic amplification: A review of first results and prospects of the (AC)3 Project. Bulletin of the American Meteorological Society, 104, E208-E242. doi:10.1175/BAMS-D-21-0218.1.


Cite as: https://hdl.handle.net/21.11116/0000-000B-2410-A
Abstract
Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project has been established in 2016 (http://www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, ship-borne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric/ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and air mass transport and transformation.