日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Lysosomal storage disease associated with a CNP sequence variant in Dalmatian dogs

MPS-Authors
/persons/resource/persons182163

Goebbels,  Sandra
Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1-s2.0-S0378111922003328.pdf
(出版社版), 38MB

付随資料 (公開)
There is no public supplementary material available
引用

Bullock, G., Johnson, G. S., Mhlanga-Mutangadura, T., Petesch, S. C., Thompson, S., Goebbels, S., & Katz, M. L. (2022). Lysosomal storage disease associated with a CNP sequence variant in Dalmatian dogs. Gene, 830:. doi:10.1016/j.gene.2022.146513.


引用: https://hdl.handle.net/21.11116/0000-000B-2B8F-5
要旨
A progressive neurological disorder was identified in purebred Dalmatian dogs. The disease is characterized by anxiety, pacing and circling, hypersensitivity, cognitive decline, sleep disturbance, loss of coordination, loss of control over urination and defecation, and visual impairment. Neurological signs first became apparent when the dogs were approximately 18 months of age and progressed slowly. Two affected littermates were euthanized at approximately 7 years, 5 months and 8 years, 2 months of age due to the severity of neurological impairment. The mother of the affected dogs and four other relatives exhibited milder, later-onset neurological signs. Pronounced accumulations of autofluorescent intracellular inclusions were found in cerebral cortex, cerebellum, optic nerve, and cardiac muscle of the affected dogs. These inclusions co-localized with immunolabeling of the lysosomal marker protein LAMP2 and bound antibodies to mitochondrial ATPase subunit c, indicating that the dogs suffered from a lysosomal storage disease with similarities to the neuronal ceroid lipofuscinoses. Ultrastructural analysis indicated that the storage bodies were surrounded by a single-layer membrane, but the storage granules were distinct from those reported for other lysosomal storage diseases. Whole genome sequences, generated with DNA from the two euthanized Dalmatians, both contained a rare, homozygous single-base deletion and reading-frame shift in CNP which encodes the enzyme CNPase (EC 3.1.4.37). The late-onset disease was exhibited by five of seven related Dalmatians that were heterozygous for the deletion allele and over 8 years of age, whereas none of 16 age-matched reference-allele homozygotes developed neurologic signs. No CNPase antigen could be detected with immunohistochemical labeling in tissues from the dogs with the earlier-onset disorder. Similar to the later-onset Dalmatians, autofluorescent storage granules were apparent in brain and cardiac tissue from transgenic mice that were nullizygous for Cnp. Based on the clinical signs, the histopathological, immunohistochemical, ultrastructural, and molecular-genetic findings, and the finding that nullizygous Cnp mice accumulate autofluorescent storage granules, we propose that the earlier-onset Dalmatian disorder is a novel lysosomal storage disease that results from a loss-of-function mutation in CNP and that shares features characteristic of the neuronal ceroid lipofuscinoses. That the later-onset disorder occurred only in dogs heterozygous for the CNP deletion variant suggests that this disorder is a result of the variant allele’s presence.