English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

Learning Parsimonious Dynamics for Generalization in Reinforcement Learning

MPS-Authors
/persons/resource/persons263619

Saanum,  T
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons139782

Schulz,  E
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Saanum, T., & Schulz, E. (submitted). Learning Parsimonious Dynamics for Generalization in Reinforcement Learning.


Cite as: https://hdl.handle.net/21.11116/0000-000B-32E8-7
Abstract
Humans are skillful navigators: We aptly maneuver through new places, realize when we are back at a location we have seen before, and can even conceive of shortcuts that go through parts of our environments we have never visited. Current methods in model-based reinforcement learning on the other hand struggle with generalizing about environment dynamics out of the training distribution. We argue that two principles can help bridge this gap: latent learning and parsimonious dynamics. Humans tend to think about environment dynamics in simple terms -- we reason about trajectories not in reference to what we expect to see along a path, but rather in an abstract latent space, containing information about the places' spatial coordinates. Moreover, we assume that moving around in novel parts of our environment works the same way as in parts we are familiar with. These two principles work together in tandem: it is in the latent space that the dynamics show parsimonious characteristics. We develop a model that learns such parsimonious dynamics. Using a variational objective, our model is trained to reconstruct experienced transitions in a latent space using locally linear transformations, while encouraged to invoke as few distinct transformations as possible. Using our framework, we demonstrate the utility of learning parsimonious latent dynamics models in a range of policy learning and planning tasks.