English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Chemoattraction in Pristionchus nematodes and implications for insect recognition

MPS-Authors
/persons/resource/persons274704

Hong,  RL       
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271084

Sommer,  RJ       
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hong, R., & Sommer, R. (2006). Chemoattraction in Pristionchus nematodes and implications for insect recognition. Current Biology, 16(23), 2359-2365. doi:10.1016/j.cub.2006.10.031.


Cite as: https://hdl.handle.net/21.11116/0000-000B-3A3D-1
Abstract
Nematodes and insects are the two dominant animal taxa in species numbers, and nematode-insect interactions constitute a significant portion of interspecies associations in a diversity of ecosystems. It has been speculated that most insects represent mobile microhabitats in which nematodes can obtain food, mobility, and shelter. Nematode-insect associations can be classified as phoretic (insects used for transportation, not as food), necromenic (insect used for transportation, then carcass as food), and entomopathogenic (insect is killed and used as food). To determine how nematodes target their hosts, we analyzed the chemosensory response and behavioral parameters of closely related Pristionchus nematodes that form species-specific necromenic associations with scarab beetles and the Colorado potato beetle. We found that all four studied Pristionchus species displayed unique chemoattractive profiles toward insect pheromones and plant volatiles with links to Pristionchus habitats. Moreover, chemoattraction in P. pacificus differs from that of C. elegans not only in the types of attractants, but also in its tempo, mode, and concentration response range. We conclude that Pristionchus olfaction is highly diverse among closely related species and is likely to be involved in shaping nematode-host interactions.