English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity

MPS-Authors
/persons/resource/persons276080

Hahn,  O.
Department Partridge - Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons129428

Grönke,  S.
Department Partridge - Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons129348

Partridge,  L.
Department Partridge - Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hahn, O., Stubbs, T. M., Reik, W., Grönke, S., Beyer, A., & Partridge, L. (2018). Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genet, 14(11), e1007766. doi:10.1371/journal.pgen.1007766.


Cite as: https://hdl.handle.net/21.11116/0000-000B-4892-F
Abstract
Dietary, pharmacological and genetic interventions can extend health- and lifespan in diverse mammalian species. DNA methylation has been implicated in mediating the beneficial effects of these interventions; methylation patterns deteriorate during ageing, and this is prevented by lifespan-extending interventions. However, whether these interventions also actively shape the epigenome, and whether such epigenetic reprogramming contributes to improved health at old age, remains underexplored. We analysed published, whole-genome, BS-seq data sets from mouse liver to explore DNA methylation patterns in aged mice in response to three lifespan-extending interventions: dietary restriction (DR), reduced TOR signaling (rapamycin), and reduced growth (Ames dwarf mice). Dwarf mice show enhanced DNA hypermethylation in the body of key genes in lipid biosynthesis, cell proliferation and somatotropic signaling, which strongly correlates with the pattern of transcriptional repression. Remarkably, DR causes a similar hypermethylation in lipid biosynthesis genes, while rapamycin treatment increases methylation signatures in genes coding for growth factor and growth hormone receptors. Shared changes of DNA methylation were restricted to hypermethylated regions, and they were not merely a consequence of slowed ageing, thus suggesting an active mechanism driving their formation. By comparing the overlap in ageing-independent hypermethylated patterns between all three interventions, we identified four regions, which, independent of genetic background or gender, may serve as novel biomarkers for longevity-extending interventions. In summary, we identified gene body hypermethylation as a novel and partly conserved signature of lifespan-extending interventions in mouse, highlighting epigenetic reprogramming as a possible intervention to improve health at old age.