Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling

MPG-Autoren
/persons/resource/persons37305

Restelli,  Marco
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Restelli, M., & Giraldo, F. (2009). A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling. SIAM Journal on Scientific Computing, 2231-2257. doi:10.1137/070708470.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-4E6B-7
Zusammenfassung
A discontinuous Galerkin (DG) finite element formulation is proposed for the solution of the compressible Navier-Stokes equations for a vertically stratified fluid, which are of interest in mesoscale nonhydrostatic atmospheric modeling. The resulting scheme naturally ensures conservation of mass, momentum, and energy. A semi-implicit time-integration approach is adopted to improve the efficiency of the scheme with respect to the explicit Runge-Kutta time integration strategies usually employed in the context of DG formulations. A method is also presented to reformulate the resulting linear system as a pseudo-Helmholtz problem. In doing this, we obtain a DG discretization closely related to those proposed for the solution of elliptic problems, and we show how to take advantage of the numerical integration rules (required in all DG methods for the area and flux integrals) to increase the efficiency of the solution algorithm. The resulting numerical formulation is then validated on a collection of classical two-dimensional test cases, including density driven flows and mountain wave simulations. The performance analysis shows that the semi-implicit method is, indeed, superior to explicit methods and that the pseudo-Helmholtz formulation yields further efficiency improvements.