Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-harmonic generation in liquids with few-cycle pulses: effect of laser-pulse duration on the cut-off energy

MPG-Autoren
/persons/resource/persons261477

Neufeld,  O.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons194586

Tancogne-Dejean,  N.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

oe-31-21-34348.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)

6596168.pdf
(Ergänzendes Material), 5MB

Zitation

Mondal, A., Waser, B., Balciunas, T., Neufeld, O., Yin, Z., Tancogne-Dejean, N., et al. (2023). High-harmonic generation in liquids with few-cycle pulses: effect of laser-pulse duration on the cut-off energy. Optics Express, 31(21), 34348-34361. doi:10.1364/OE.496686.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-4546-9
Zusammenfassung
High-harmonic generation (HHG) in liquids is opening new opportunities for attosecond light sources and attosecond time-resolved studies of dynamics in the liquid phase. In gas-phase HHG, few-cycle pulses are routinely used to create isolated attosecond pulses and to extend the cut-off energy. Here, we study the properties of HHG in liquids, including heavy water, ethanol and isopropanol, by continuously tuning the pulse duration of a mid-infrared driver from the multi- to the two-cycle regime. Similar to the gas phase, we observe the transition from discrete odd-order harmonics to continuous extreme-ultraviolet emission. However, the cut-off energy is shown to be entirely independent of the pulse duration. These observations are confirmed by ab-initio simulations of HHG in large liquid clusters. Our results support the notion that the cut-off energy is a fundamental property of the liquid, independent of the driving-pulse properties. Our work implies that few-cycle mid-infrared laser pulses are suitable drivers for generating isolated attosecond pulses from liquids and confirm the capability of high-harmonic spectroscopy to determine the mean-free paths of slow electrons in liquids.