Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Renormalization-group analysis of the one-dimensional extended Hubbard model with a single impurity

MPG-Autoren
/persons/resource/persons279733

Andergassen,  S.
Department Quantum Many-Body Theory (Walter Metzner), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279918

Enss,  T.
Department Quantum Many-Body Theory (Walter Metzner), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280304

Metzner,  W.
Department Quantum Many-Body Theory (Walter Metzner), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280494

Schollwöck,  U.
Department Quantum Many-Body Theory (Walter Metzner), Max Planck Institute for Solid State Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Andergassen, S., Enss, T., Meden, V., Metzner, W., Schollwöck, U., & Schönhammer, K. (2006). Renormalization-group analysis of the one-dimensional extended Hubbard model with a single impurity. Physical Review B, 73(4): 045125.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-0295-6
Zusammenfassung
We analyze the one-dimensional extended Hubbard model with a single
static impurity by using a computational technique based on the
functional renormalization group. This extends previous work for
spinless fermions to spin-1/2 fermions. The underlying approximations
are devised for weak interactions and arbitrary impurity strengths, and
have been checked by comparing with density-matrix
renormalization-group data. We present results for the density of
states, the density profile, and the linear conductance. Two-particle
backscattering leads to striking effects, which are not captured if the
bulk system is approximated by its low-energy fixed point, the
Luttinger model. In particular, the expected decrease of spectral
weight near the impurity and of the conductance at low energy scales is
often preceded by a pronounced increase, and the asymptotic power laws
are modified by logarithmic corrections.