Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Non-Hermitian dislocation modes: Stability and melting across exceptional points

MPG-Autoren
/persons/resource/persons145694

Moessner,  Roderich
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2105.05244.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Panigrahi, A., Moessner, R., & Roy, B. (2022). Non-Hermitian dislocation modes: Stability and melting across exceptional points. Physical Review B, 106(4): L041302. doi:10.1103/PhysRevB.106.L041302.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-4A1F-1
Zusammenfassung
The traditional bulk-boundary correspondence assuring robust gapless modes at the edges and surfaces of insulating and nodal topological materials gets masked in non-Hermitian (NH) systems by the skin effect, manifesting an accumulation of a macroscopic number of states near such interfaces. Here we show that dislocation lattice defects are immune to such skin effect or at most display a weak skin effect (depending on its relative orientation with the Burgers vector), and as such they support robust topological modes in the bulk of a NH system, specifically when the parent Hermitian phase features band inversion at a finite momentum. However, the dislocation modes gradually lose their support at their core when the system approaches an exceptional point, and finally melt into the boundary of the system across the NH band gap closing. We explicitly demonstrate these findings for a two-dimensional NH Chern insulator, thereby establishing that dislocation lattice defects can be instrumental to experimentally probe pristine NH topology.