Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Hidden potential in predicting wintertime temperature anomalies in the Northern Hemisphere


Müller,  Wolfgang A.
Decadal Climate Predictions - MiKlip, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available

Dobrynin, M., Duesterhus, A., Froehlich, K., Athanasiadis, P., Ruggieri, P., Müller, W. A., et al. (2022). Hidden potential in predicting wintertime temperature anomalies in the Northern Hemisphere. Geophysical Research Letters, 49: e2021GL095063. doi:10.1029/2021GL095063.

Cite as: https://hdl.handle.net/21.11116/0000-000B-5661-7
Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anomalies in the Northern Hemisphere. Dynamical seasonal prediction systems can skilfully predict the winter NAO. However, prediction of the NAO-dependent air temperature anomalies remains elusive, partially due to the low variability of predicted NAO. Here, we demonstrate a hidden potential of a multi-model ensemble of operational seasonal prediction systems for predicting wintertime temperature by increasing the variability of predicted NAO. We identify and subsample those ensemble members which are close to NAO index statistically estimated from initial autumn conditions. In our novel multi-model approach, the correlation prediction skill for wintertime Central Europe temperature is improved from 0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9. Thereby, temperature anomalies can be skilfully predicted for the upcoming winter over a large part of the Northern Hemisphere through increased variability and skill of predicted NAO.