Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Topological Effects in Two-Dimensional Quantum Emitter Systems

MPG-Autoren
/persons/resource/persons282497

Bello,  Miguel
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons60441

Cirac,  J. Ignacio
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;
MCQST - Munich Center for Quantum Science and Technology, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2210.16137.pdf
(Preprint), 3MB

6395.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bello, M., & Cirac, J. I. (2023). Topological Effects in Two-Dimensional Quantum Emitter Systems. Physical Review B, 107: 054301. doi:10.1103/PhysRevB.107.054301.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-63F1-5
Zusammenfassung
In this work we discuss particular effects that take place in systems of
quantum emitters coupled to two-dimensional bosonic topological insulators. For
a single emitter coupled to the Haldane model, we find a "fragile" quasibound
state that makes the emitter dynamics very sensitive to the model's parameters,
and gives rise to effective long-range interactions that break time-reversal
symmetry. We then discuss one-dimensional arrangements of emitters, emitter
line defects, and how the topology of the bath affects the effective polariton
models that appear in the weak-coupling regime when the emitters are spectrally
tuned to a bandgap. In the Harper-Hofstadter model we link the non-monotonic
character of the effective interactions to the Chern numbers of the surrounding
energy bands, while in the Haldane model we show that the effective models are
either gapless or not depending on the topology of the bath. Last, we discuss
how the presence of emitters forming an ordered array, an emitter superlattice,
can produce polariton models with non-trivial Chern numbers, and also modify
the topology of the photonic states in the bath.