Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Primordial magnetic fields in Population III star formation: a magnetized resolution study

MPG-Autoren
/persons/resource/persons4732

Pakmor,  Rüdiger
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Prole, L. R., Clark, P. C., Klessen, R. S., Glover, S. C. O., & Pakmor, R. (2022). Primordial magnetic fields in Population III star formation: a magnetized resolution study. Monthly Notices of the Royal Astronomical Society, 516(2), 2223-2234. doi:10.1093/mnras/stac2327.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-5CB1-6
Zusammenfassung
Population III (Pop III) stars form in groups due to the fragmentation of primordial gas. While uniform magnetic fields have been shown to support against fragmentation in present-day star formation, it is unclear whether realistic k3/2 primordial fields can have the same effect. We bypass the issues associated with simulating the turbulent dynamo by introducing a saturated magnetic field at equipartition with the velocity field when the central densities reach 10−13 g cm−3. We test a range of sink particle creation densities from 10−10 to 10−8 g cm−3. Within the range tested, the fields did not suppress fragmentation of the gas and hence could not prevent the degree of fragmentation from increasing with increased resolution. The number of sink particles formed and total mass in sink particles was unaffected by the magnetic field across all seed fields and resolutions. The magnetic pressure remained sub-dominant to the gas pressure except in the highest density regions of the simulation box, where it became equal to but never exceeded gas pressure. Our results suggest that the inclusion of magnetic fields in numerical simulations of Pop III star formation is largely unimportant.