English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The tidal disruption event AT2021ehb: Evidence of relativistic disk reflection, and rapid evolution of the disk-corona system

MPS-Authors
/persons/resource/persons4726

Gilfanov,  Marat
High Energy Astrophysics, MPI for Astrophysics, Max Planck Society;

/persons/resource/persons4829

Sunyaev,  R.
High Energy Astrophysics, MPI for Astrophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yao, Y., Lu, W., Guolo, M., Pasham, D. R., Gezari, S., Gilfanov, M., et al. (2022). The tidal disruption event AT2021ehb: Evidence of relativistic disk reflection, and rapid evolution of the disk-corona system. The Astrophysical Journal, 937(1): 8. doi:10.3847/1538-4357/ac898a.


Cite as: https://hdl.handle.net/21.11116/0000-000B-5CE9-8
Abstract
The GLASS-JWST Early Release Science (hereafter GLASS-JWST-ERS) Program will obtain and make publicly available the deepest extragalactic data of the ERS campaign. It is primarily designed to address two key science questions, namely, “what sources ionized the universe and when?” and “how do baryons cycle through galaxies?”, while also enabling a broad variety of first look scientific investigations. In primary mode, it will obtain NIRISS and NIRSpec spectroscopy of galaxies lensed by the foreground Hubble Frontier Field cluster, Abell 2744. In parallel, it will use NIRCam to observe two fields that are offset from the cluster center, where lensing magnification is negligible, and which can thus be effectively considered blank fields. In order to prepare the community for access to this unprecedented data, we describe the scientific rationale, the survey design (including target selection and observational setups), and present pre-commissioning estimates of the expected sensitivity. In addition, we describe the planned public releases of high-level data products, for use by the wider astronomical community.