English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Alpha-band suppression in the visual word form area as a functional bottleneck to consciousness

MPS-Authors

Oostenveld,  Robert
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Fries Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons141609

Fries,  Pascal       
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Fries Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Levy, J., Vidal, J. R., Oostenveld, R., FitzPatrick, I., Démonet, J.-F., & Fries, P. (2013). Alpha-band suppression in the visual word form area as a functional bottleneck to consciousness. NeuroImage, 78, 33-45. doi:10.1016/j.neuroimage.2013.04.020.


Cite as: https://hdl.handle.net/21.11116/0000-000B-6170-9
Abstract
The current state of empirical investigations refers to consciousness as an all-or-none phenomenon. However, a recent theoretical account opens up this perspective by proposing a partial level (between nil and full) of conscious perception. In the well-studied case of single-word reading, short-lived exposure can trigger incomplete word-form recognition wherein letters fall short of forming a whole word in one's conscious perception thereby hindering word-meaning access and report. Hence, the processing from incomplete to complete word-form recognition straightforwardly mirrors a transition from partial to full-blown consciousness. We therefore hypothesized that this putative functional bottleneck to consciousness (i.e. the perceptual boundary between partial and full conscious perception) would emerge at a major key hub region for word-form recognition during reading, namely the left occipito-temporal junction. We applied a real-time staircase procedure and titrated subjective reports at the threshold between partial (letters) and full (whole word) conscious perception. This experimental approach allowed us to collect trials with identical physical stimulation, yet reflecting distinct perceptual experience levels. Oscillatory brain activity was monitored with magnetoencephalography and revealed that the transition from partial-to-full word-form perception was accompanied by alpha-band (7-11 Hz) power suppression in the posterior left occipito-temporal cortex. This modulation of rhythmic activity extended anteriorly towards the visual word form area (VWFA), a region whose selectivity for word-forms in perception is highly debated. The current findings provide electrophysiological evidence for a functional bottleneck to consciousness thereby empirically instantiating a recently proposed partial perspective on consciousness. Moreover, the findings provide an entirely new outlook on the functioning of the VWFA as a late bottleneck to full-blown conscious word-form perception.