English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comparative Study on the Magnetic and Transport Properties of B-Site Ordered and Disordered CaCu3Fe2Os2O12

MPS-Authors
/persons/resource/persons126507

Agrestini,  Stefano
Stefano Agrestini, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons246863

Chen,  Kai
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126881

Tjeng,  Liu Hao
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, X., Liu, Z., Deng, H., Agrestini, S., Chen, K., Lee, J.-F., et al. (2022). Comparative Study on the Magnetic and Transport Properties of B-Site Ordered and Disordered CaCu3Fe2Os2O12. Inorganic Chemistry, 61(42), 16929-16935. doi:10.1021/acs.inorgchem.2c03030.


Cite as: https://hdl.handle.net/21.11116/0000-000C-2BB1-C
Abstract
The B-site Fe/Os ordered and disordered quadruple perovskite oxides CaCu3Fe2Os2O12 were synthesized under different high-pressure and high-temperature conditions. The B-site ordered CaCu3Fe2Os2O12 is a system with a very high ferrimagnetic ordering temperature of 580 K having the Cu2+(↑)Fe3+(↑)Os5+(↓) charge and spin arrangement. In comparison, the highly disordered CaCu3Fe2Os2O12 has a reduced magnetic transition temperature of about 350 K. The Cu2+Fe3+Os5+ charge combination remains the same without any sign of changes in the valence state of the constituent ions. Although the average net moments of each sublattice are reduced, the average ferrimagnetic spin arrangement is unaltered. The robustness of the basic magnetic properties of CaCu3Fe2Os2O12 against site disorder may be taken as an indication of the tendency to maintain the short-range order of the atomic constituents. © 2022 American Chemical Society.