English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Modified poly(heptazine imides) : minimizing H2O2 decomposition to maximize oxygen reduction

MPS-Authors
/persons/resource/persons268715

Silva,  Ingrid F.
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons212917

Tarakina,  Nadezda V.       
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus       
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rogolino, A., Silva, I. F., Tarakina, N. V., da Silva, M. A. R., Rocha, G. F. S. R., Antonietti, M., et al. (2022). Modified poly(heptazine imides): minimizing H2O2 decomposition to maximize oxygen reduction. ACS Applied Materials and Interfaces, 14(44), 49820-49829. doi:10.1021/acsami.2c14872.


Cite as: https://hdl.handle.net/21.11116/0000-000B-64CB-0
Abstract
Photocatalysis provides a sustainable pathway to produce the consumer chemical H2O2 from atmospheric O2 via an oxygen reduction reaction (ORR). Such an alternative is attractive to replace the cumbersome traditional anthraquinone method for H2O2 synthesis on a large scale. Carbon nitrides have shown very interesting results as heterogeneous photocatalysts in ORR because their covalent two-dimensional (2D) structure is believed to increase selectivity toward the two-electron process. However, an efficient and scalable application of carbon nitrides for this reaction is far from being achieved. Poly(heptazine imides) (PHIs) are a more powerful subgroup of carbon nitrides whose structure provides high crystallinity and a scaffold to host transition-metal single atoms. Herein, we show that PHIs functionalized with sodium and the recently reported fully protonated PHI exhibit high activity in two-electron ORR under visible light. The latter converted O2 to up to 1556 mmol L–1 h–1 g–1 H2O2 under 410 nm irradiation using inexpensive but otherwise chemically demanding glycerin as a sacrificial electron donor. We also prove that functionalization with transition metals is not beneficial for H2O2 synthesis, as the metal also catalyzes its decomposition. Transient photoluminescence spectroscopy suggests that H-PHIs exhibit higher activity due to their longer excited-state lifetime. Overall, this work highlights the high photocatalytic activity of the rarely examined fully protonated PHI and represents a step forward in the application of inexpensive covalent materials for photocatalytic H2O2 synthesis.